Arthrex Minimally Invasive Bunionectomy

Surgical Technique

Minimally Invasive Bunionectomy System and Beveled FT Screws


Introduction

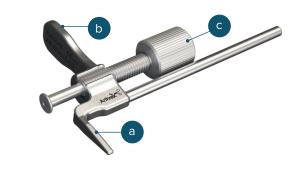
The Arthrex MIS product portfolio continues to grow with the introduction of the Minimally Invasive Bunionectomy System. This trajectory system helps achieve correction and fixation placement using a percutaneous approach. Designed specifically to work with the system, the Beveled FT screws are angled to provide zero-profile fixation.

MIS Instrumentation

- DrillSaw Highspeed 200[™] Power System
- Rasps and Elevators
- Burrs

Rasps and Elevators

Percutaneous Burrs


Arthrex Bunionectomy Minimally Invasive Bunion Correction


System Overview

Shifting device – Shifts the capital fragment laterally; cannulation allows for maintaining the shift

- Intramedullary hook: slides into the intramedullary canal of the metatarsal (a)
- Thumb paddle: allows for leveraging of the first toe while applying lateral pressure (b)
- Capital fragment shifter: threads into the intramedullary hook to shift the capital fragment laterally (c)

Capital fragment guidewire – secures the shifting device to the capital fragment and serves as a target for the trajectory guide (d)

Trajectory guide – sets trajectory of the K-wires relative to the position of the capital fragment guidewire

- K-wire positioning knob: locks in position on capital fragment K-wire (e)
- Screw positioning knob: locks in the proximal-distal position of the guide relative to the capital fragment (f)

K-wire guides

- Depth device: clicks into the drill sleeve; provides pinpoint accuracy for K-wire placement (g)
- Drill sleeve: allows for drilling and screw placement through the trajectory guide to maintain positioning and correction (h)



Assembly Steps

Trajectory Guide Assembly

Thread the K-wire positioning knob into the largest hole, furthest from the K-wire guide slots. Thread the screw positioning knob into the hole nearest to the K-wire guide slots.

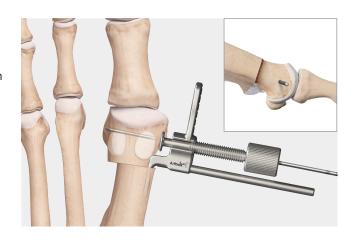
The **K-wire positioning knob** controls the medial-lateral placement of the trajectory guide. Final positioning is dictated by the laser lines of the capital fragment guidewire.

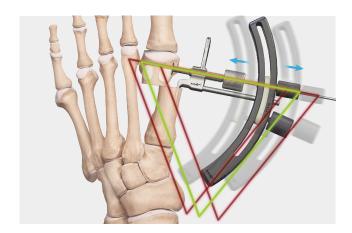
The **screw positioning knob** controls the distal-proximal placement of the K-wire guides.

The depth device clicks into the drill sleeve to assemble the K-wire guides. These are placed into the K-wire guide slots.

Shifting Device Assembly

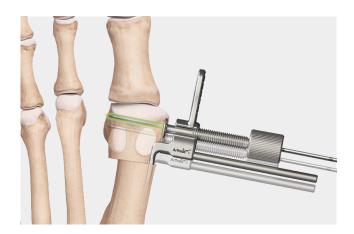
Thread the capital fragment shifter into the intramedullary hook. At the start of the procedure, the capital fragment shifter should only thread in two to three rotations such that the end of the device is just flush with the intramedullary hook.


The capital fragment shifter is offered in two different sizes—small and large. The larger size provides more surface area to push against for patients with poor bone quality.



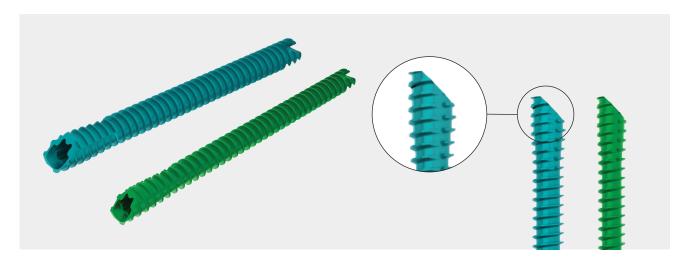
How It Works

A small and simple patent-pending shifting device applies and holds correction of the capital fragment. The threads on the capital fragment shifter allow users to precisely dial in the desired lateral shift depending on the patient's deformity.


Prior to shifting the fragment, a K-wire is advanced through the shifting device, just to the lateral edge of the capital fragment. It is recommended to address any rotational correction prior to advancing this wire.

Used together, the entire system works like a triangle, with the tip of the capital fragment wire serving as the aiming point for the screw K-wires.

From this diagram, you can see that if the capital fragment wire or the trajectory guide is not placed appropriately, the entire triangular trajectory of the system can be affected.



More distal placement of the capital fragment guidewire results in greater screw purchase in the capital fragment. Note: The intramedullary hook must remain engaged in the canal of the metatarsal to hold correction.

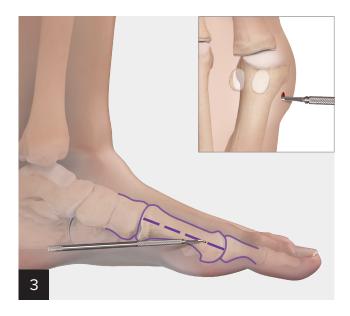
The trajectory guide is placed over the capital fragment guidewire and secured at the laser line.


Beveled FT Screws - 4.0 mm and 3.5 mm

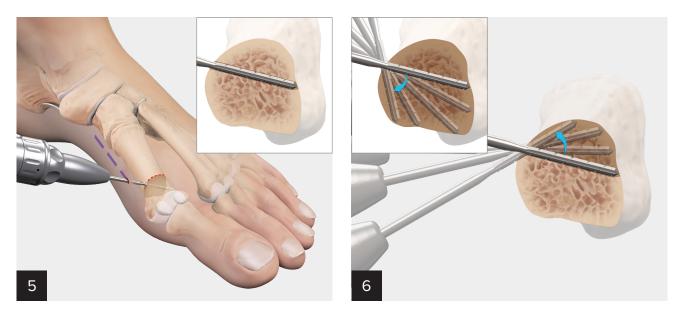
The Arthrex Minimally Invasive Bunionectomy System also includes Beveled FT screws designed specifically for minimally invasive bunion correction.

The 45° beveled head provides a zero-profile construct when fully inserted. The Beveled FT screws have a constant thread pitch compared to Compression FT screws as compression may result in tilting of the capital fragment.

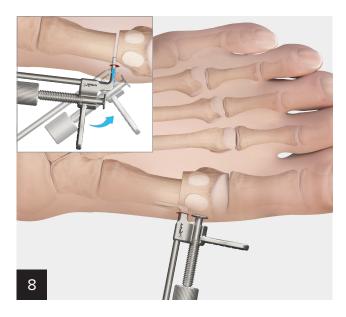
The Beveled FT screws also have an increased cannulation. This allows use of more robust instrumentation. The increased diameter of the guidewires reduces cortical skiving and provides stability throughout the case. The laser-marked guidewires also allow for quick screw measurements from the depth devices used with the system.


Screw Diameter	4.0 mm Beveled FT	3.5 mm Beveled FT
K-Wire Size	1.6 mm	1.4 mm
Drill Bit	3.6 mm	2.9 mm
Driver	T15 Hexalobe	T10 Hexalobe

Outline the bony anatomy of the metatarsal, marking the TMT joint and the MTP joint.


Mark the midline of the metatarsal shaft.

Make a stab incision on the midline of the metatarsal, just proximal to the sesamoid complex at the metatarsal neck.

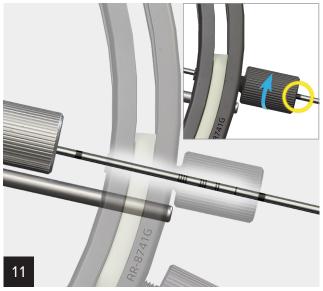

Free the soft tissue at the osteotomy site using the specialized periosteal elevator.

For a transverse osteotomy, introduce the burr at the apex of the osteotomy through both cortices, aiming in a slight plantar direction. First, perform the dorsal cut by rotating the hand plantar (burr moves dorsal). Next, perform the plantar cut by rotating the hand dorsal (burr moves plantar).

Use fluoroscopy to confirm that the osteotomy is complete.

Insert the hook into the intramedullary canal of the metatarsal.

Optional: Make an incision where the capital fragment shifter contacts the head of the metatarsal and insert the end of the shifter through the skin onto the bone.

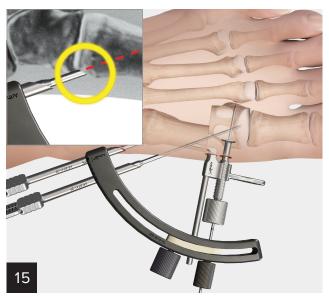


While pulling the toe into varus, confirm appropriate positioning of the shifting device under fluoroscopic imaging. Advance the capital fragment guidewire through the capital fragment shifter to the lateral cortex of the fragment.

Capital fragment guidewire placement should be parallel to the articular surface and centered in the sagittal plane. Note: For a bunion with a rotational deformity, apply rotational correction and properly align the sesamoid complex prior to inserting the K-wire into the capital fragment.

Turn the capital fragment shifter clockwise to shift the capital fragment laterally.

Slide the trajectory guide onto the capital fragment K-wire through the K-wire positioning knob. Tighten the K-wire positioning knob onto the capital fragment guidewire such that the thickest laser line of the guidewire is in line with the top of the knob.

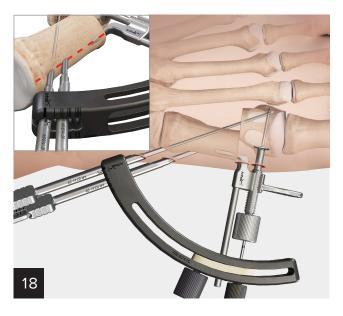

Turn the screw positioning knob clockwise to fix the proximal placement of the K-wire guide, close to the TMT joint. Ensure that the depth device contacts the metatarsal on the marked midline of the metatarsal shaft.

Slide the same K-wire guide or an additional K-wire guide into the most distal slot. Ensure that the depth device contacts the metatarsal on the marked midline of the metatarsal shaft.

Advance a K-wire through the distal K-wire guide to temporarily secure the guide to the foot. Ensure adequate bone purchase with this guidewire to provide stabilization.

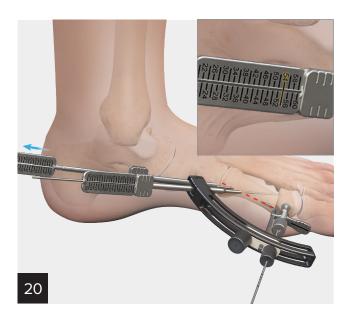
insert a K-wire guide in the most proximal slot. Make an incision to advance the depth device to bone and ensure that the bevel is aligned with the surface of the metatarsal.

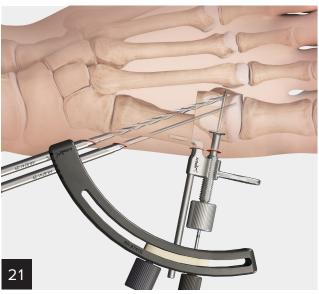
Advance the appropriately sized K-wire through the K-wire guide and into the metatarsal. Ideal placement of the K-wire for the most proximal screw traverses both cortices of the proximal metatarsal prior to penetrating the capital fragment.


Tip: When contacting the second cortex, spin the wire without advancing to avoid skiving on the cortex.

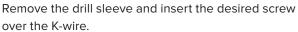
4.0 mm screw-1.6 mm K-wire

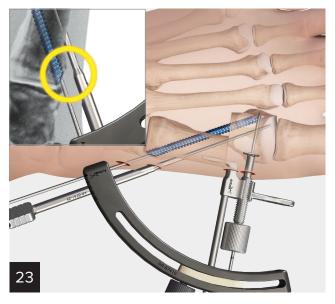
3.5 mm screw—1.4 K-wire


Remove the temporary fixation K-wire and K-wire guide from the most distal slot.

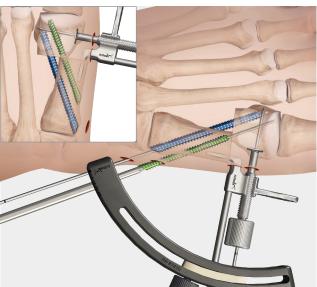

Insert the second K-wire guide distal to the first, being sure to skip one slot. **Tip: Make an incision to ensure that the depth device is on bone and the bevel is aligned with the surface of the metatarsal.**

Advance the appropriate diameter K-wire through the second K-wire guide. Confirm proper wire placement with fluoroscopic assistance. **Note: Be sure to confirm wire placement on a lateral view as well.**


For the most proximal screw, measure the screw length from the laser line on the K-wire. Remove the depth device, leaving the drill sleeve in place.

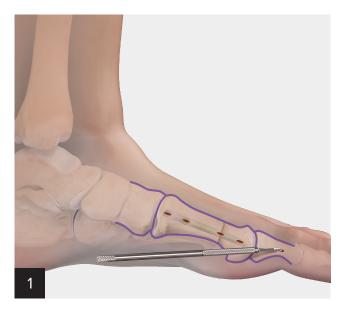

Drill the full length of the wire through the drill sleeve using the appropriately sized drill, leaving the K-wire in place.

4.0 mm screw—3.6 mm drill 3.5 mm screw—2.9 mm drill



4.0 mm screw—T15 hexalobe driver 3.5 mm screw—T10 hexalobe driver

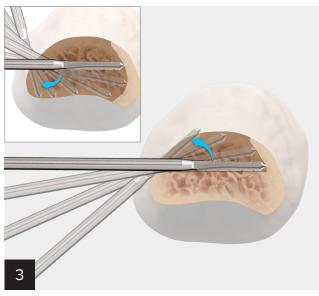
With fluoroscopic assistance, confirm that the bevel of the screw is properly aligned with the metatarsal.


Repeat steps 17-19 for the second screw. Insert the screw over the K-wire and confirm that the bevel of the screw is properly aligned with the metatarsal.

Once both screws have been placed, remove the trajectory guide, shifting device, and any remaining K-wires.

Minimally Invasive Akin Osteotomy

Surgical Technique



Make an incision midline at the proximal phalanx and use the periosteal elevator to elevate the soft tissue both dorsal and plantar.

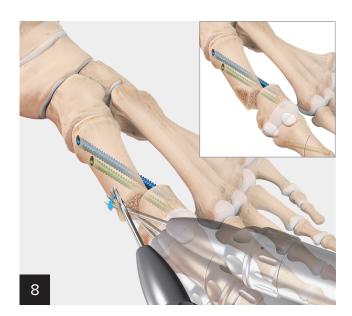
Insert the burr midline at the proximal phalanx and aimed 45° proximal toward the proximal lateral aspect of the proximal phalanx. Be careful not to advance the burr bicortically.

Next, rotate the burr dorsal and finally plantar, again ensuring not to violate the lateral cortex.

Minimally Invasive Akin Osteotomy Surgical Technique (Cont.)

Use fluoroscopy to confirm an adequate osteotomy has been achieved. Manually reduce the osteotomy and insert a K-wire to prepare for definitive fixation.

Use the beaver blade to create a small incision. Proceed to measure and drill for the Compression FT screw.


Minimally Invasive Akin Osteotomy Surgical Technique (Cont.)

The optional profile drill can be used at this time.

Insert the Compression FT screw to complete the construct. Optional: Surgeons can alter the direction of the osteotomy based on the direction of definitive fixation desired.

Insert the wedge burr through the initial medial incision and proceed to shave down the prominence until it is no longer palpable outside the skin.

Final AP and lateral views of the construct.

DrillSaw Highspeed 200™ Set (AR-200)

Product Description	Item Number
Instruments	
DrillSaw Highspeed 200 Set Console	AR- 200C
Motor w/ Cable, 0-15,000 rpm	AR- 200M
Irrigation Clip	AR- 200SP
Foot Pedal	OEM06202400
IV Stand	OEM04005900
Motor Support	OEM06177800

Burr Attachment

Product Description	Item Number
MIS Burr Adapter, 2.35 mm	AR- 300B

Disposables, Sterile

Product Description	Item Number	
Osteotomies for Lesser Toe Deformity Correction		
Burr, straight, sterile, 8 mm × 2 mm	AR- 300-B002	
Burr, straight, sterile, 12 mm × 2.2 mm	AR- 300-B003	
Osteotomies for Hallux Valgus Correction		
Burr, straight, sterile, 13 mm × 2 mm	AR- 300-B001	
Burr, straight, sterile, 19.5 mm × 2 mm	AR- 300-B201	
Bone Resection for Hallux Valgus/Hallux Rigidus Correction		
Burr, conical, sterile, 13 mm × 4.3 mm	AR- 300-B101	
Burr, straight, sterile, 13 mm × 2.9 mm	AR- 300-B102	
Burr, oval, sterile, 15 mm × 5 mm	AR- 300-B103	
Chevron Osteotomy for Calcaneal Displacement		
Burr, straight, sterile, 20 mm × 3.1 mm	AR- 300-B202	

Minimally Invasive Bunion Correction System (AR-8741S)

Product Description	Item Number
Instruments	
Minimally Invasive Bunion Trajectory Guide	AR- 8741G
K-Wire Positioning Knob, qty. 2	AR- 8741G-01
Screw Positioning Knob, qty. 2	AR- 8741G-02
Capital Fragment Shifter, small, qty. 2	AR- 8741LS-01
Capital Fragment Shifter, large	AR- 8741LS-02
Intramedullary Hook, qty. 2	AR- 8741LS-03
Drill Sleeve, Beveled FT	AR- 8741-29
Depth Device, Beveled FT	AR- 8741-28
Profile Drill, 3.5 mm Beveled FT	AR- 8741-36
Profile Drill, 4 mm Beveled FT	AR- 8741-37
Driver, T10 hexalobe, Beveled FT	AR- 8741-40
Driver, T15 hexalobe, Beveled FT	AR- 8741-42
Handle, ratcheting, AO	AR- 8700RH
Depth Device, 2.5 mm Compression FT	AR- 8737-51
Driver Shaft, 1.5 mm hex, cannulated	AR- 8737-37
Profile Drill, 2.5 mm Compression FT	AR- 8737-46
Rasp and Blunt Elevator, small	AR- 8880-01
Rasp and Blunt Elevator, medium	AR- 8880-02
Combi Elevator, straight and curved ends, sharp	AR- 8880-03
Sayre Elevator	AR- 8954-05
Scalpel Handle, 13 cm	3KL
Minimally Invasive Bunion Correction System	AR- 8741C
Minimally Invasive Bunion Screw Caddy	AR- 8741C-01
Implants	
Beveled FT Screw, 3.5 mm × 20 mm-60 mm (2 mm increments)	AR- 8735BV-20-60
Beveled FT Screw, 4.0 mm × 20 mm-60 mm	AR- 8740BV-20 -60
(2 mm increments)	AR- 8725-14H-50H
2.5 Micro Compression FT™ Screw,2.5 mm × 14 mm-50 mm (2 mm increments)	AK-0/25-14H-50H
Disposables	
Drill, cannulated, 2.0 mm	AR- 8737-34
Drill, cannulated, hard bone, 2.2 mm	AR- 8737-58
Guidewire, .86 mm	AR- 8737-39
Guidewire, capital fragment , 1.6 mm	AR- 8741-16
Guidewire, 1.4 mm, Beveled FT	AR- 8741-14
Guidewire, 1.6 mm, Beveled FT	AR- 8741-15
Drill Bit, cannulated, 2.9 mm	AR- 8741-25
Drill Bit, cannulated, 3.6 mm	AR- 8741-32
	57.7.52

This description of technique is provided as an educational tool and clinical aid to assist properly licensed medical professionals in the usage of specific Arthrex products. As part of this professional usage, the medical professional must use their professional judgment in making any final determinations in product usage and technique. In doing so, the medical professional should rely on their own training and experience, and should conduct a thorough review of pertinent medical literature and the product's directions for use. Postoperative management is patient-specific and dependent on the treating professional's assessment. Individual results will vary and not all patients will experience the same postoperative activity level and/or outcomes.

View U.S. patent information at www.arthrex.com/corporate/virtual-patent-marking

arthrex.com